手入力 計算システムの結果を手入力 エクセルによる自動計算

		諸元						算定方法等 指針
基本諸元		нала	値				<u> </u>	
雨水浸透阻害行	「為区域	a	単位 m ² (ha)					
	為に該当しない区域	b	m ² (ha)					
開発区域		A _a	m ² (ha)					$A_a = a + b$
	所水を流入する区域	$\frac{A_b}{A}$	m ² (ha)					$\Lambda = \Lambda + \Lambda$
集水区域	行為前	f_0	m ² (ha)					A=A _a +A _b 計算システムにより算出し入力
合成流出係数		f ₁						計算システムにより算出し入力
基準降雨	1/3 or 1/10	W			1/			$500m2 \le a < 1,000m2 \rightarrow W=1/3,1000m2 \le a \rightarrow W=1/10$
	行為前	Q_0	m ³ /s					計算システムにより算出し入力
ピーク流入量	行為後	Q_1	m ³ /s					計算システムにより算出し入力
直接放流区域が	ある場合							開発区域内に調整池に流入しない面積がある場合に入力
直接放流区域		С	m ² (ha)					
合成流出係数	行為後	f _e	3					
直接放流量	行為後	q_1	$\frac{\text{m}^3}{\text{s}}$			1		$Q_0=1/360*f_c*r(1/3\rightarrow98.2, 1/5\rightarrow120.8)*c$
	を除いた集水区域	$\frac{A_c}{f_{0c}}$	m²(ha)					A _c =A-c 計算システムにより算出し入力
合成流出係数	<u>行為前</u> 行為後	f _{1c}						計算システムにより算出し入力
許容放流量	11301	Q _{下段} 、Q _{上段}	m ³ /s					$Q_{\text{TB}} = Q_0 - q_1 - Q_{\text{FB}}$
透施設諸元		* X * * <u>T</u> X	111.7.5					4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
飽和透水係数	Frank F. J. AREA.	1_	,	中間値		←選択		現地透水試験か中間値を選択
	「現地透水試験」or 「中間値」	k_0	cm/s			←少数第5位まで		現地試験の場合に入力する
		k ₀ '	m/hr			03		$k_0' = k_0 \times 3600 / 100$
影響係数		α			81		.45	地下水位、目づまり等による影響に対する安全率
	. 1. 1 A-A-Jan		1	(1)	2	3	4	←それぞれ4種類まで入力可能
Ļ	ますの種類							←円筒ます:1、正方ます:2、矩形ます:3
	浸透面 幅1(直径)	w1(d)	m					←[側面及び底面]:1、[底面]:2 設置する浸透ますの幅(直径)
	幅2(延長)	w2(L)	m m					設直する浸透ますの幅(延長) ※円筒、正方の場合は記入不要
	設計水頭	H	m					設置する浸透ますの設計水頭
泊送でア	比浸透量	k _{fm}	m ²					幅(直径)、設計水頭を用いて算定式により算出
浸透ます	個数	N	個					設置する浸透ますの個数
	浸透対策量	$Q_{m1\sim n}$	m ³ /hr	0.00	0.00	0.00	0.00	$Q_{m1\sim n} = k_0' \times \alpha \times k_{fm} \times N$
	浸透対策量 計	Q_{m}	m^3/s		0.00	0000		$(Q_{\rm m} = Q_{\rm m1} + Q_{\rm m2} + \cdots + Q_{\rm mn})/3600$
	体 積	$v_{m1\sim n}$	m^3					
	空隙率	$\alpha_{m1\sim n}$	%					使用する部材により決定
	空隙貯留量上計	$v_{\rm m}$	m ³	0.000				$v_m = v_{m1} \times \alpha_{m1} + v_{m2} \times \alpha_{m2} + \cdots + v_{mn} \times \alpha_{mn}$
	幅	W	m					設置する浸透トレンチの幅
	設計水頭	H k _{ft}	m	0.00	0.00	0.00	0.00	設置するトレンチの設計水頭 幅、設計水頭を用いて算定式により算出
浸透トレンチ	<u>比浸透量</u> 延 長	L _t	m	0.00	0.00	0.00	0.00	幅、双町小項を用いて昇足式により昇田
及び		$Q_{t1\sim n}$	m m ³ /hr	0.00	0.00	0.00	0.00	$Q_{t1\sim n} = k_0' \times \alpha \times k_{ft} \times L_t$
浸透側溝	浸透対策量 計	Q_t	m ³ /s	0.00		0.00	0.00	$(Q_t = Q_{t1} + Q_{t2} + \cdots + Q_{tn})/3600$
2273117	体 積	V _{t1∼n}	m ³		0.00			
	空隙率	α _{t1~n}	%					使用する部材により決定
	空隙貯留量 計	v_{t}	m^3	0.000				$v_t = v_{t1} \times \alpha_{t1} + v_{t2} \times \alpha_{t2} + \cdots + v_{tn} \times \alpha_{tn}$
透水性舗装	設計水頭	Н	m					施工する透水性舗装の設計水頭
	比浸透量	k _{fh}	m	0.000	0.000	0.000	0.000	設計水頭を用いて算定式により算出
	面積	A_h	m ²	0.00	0.00	0.00	0.00	施工する透水性舗装の面積
	浸透対策量	$Q_{h1\sim n}$	m ³ /hr	0.00 0.00 0.			0.00	$Q_{h1\sim n} = k_0' \times \alpha \times k_{fh} \times A_h$
-	浸透対策量 計 体 積	Q _h	m ³ /s m ³		0.00	,000		(Q _h =Q _{h1} +Q _{h2} +・・・・+Q _{hn})/3600 施工する透水性舗装の形状により算出
	空隙率	$\frac{v_{h1\sim_n}}{\alpha_{h1\sim_n}}$	m" %					便工する透水性舗装の形状により鼻面 使用する部材により決定
	空隙貯留量計	u _{h1∼n} V _h	m ³	0.000			1	$v_h = v_{h1} \times \alpha_{h1} + v_{h2} \times \alpha_{h2} + \cdots + v_{hn} \times \alpha_{hn}$
その他	浸透対策量	$Q_{x1\sim n}$	m ³ /hr		0.000			施工する施設の浸透能力により算出し入力
	浸透対策量 計	Q_x	m ³ /s	0.00000				$(Q_x = Q_{x1} + Q_{x2} + \cdots + Q_{xn})/3600$
	空隙貯留量	$v_{x1\sim n}$	m ³					使用する二次製品の空隙貯留量を入力
	空隙貯留量 計	V _x	m ³	0.000				$\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}1} + \mathbf{v}_{\mathbf{x}2} + \cdots + \mathbf{v}_{\mathbf{x}n}$
浸透対策量	合 計	Q _s	m ³ /s	0.00000				$Q_s = Q_m + Q_t + Q_h + Q_x$
空隙貯留量	合 計	$V_{_{\mathrm{S}}}$	m^3		0.0	000		$v_s = v_m + v_t + v_h + v_x$
庁留施設諸元 池の壁面形状 ┃	池の勾配	古腔 。	r 1:0					←「直壁」、「1:○」、「複断面」を記入
心ツ室山形状	但ツバタ間に	ル深(m)	r 1:① 容量(v)	7k 32	K(m)	ポペン	プ(v)	└──「旦生」、「1:○」、「後断面」を記入 地盤高、外水位の高さ等を考慮して設定した貯留施設の形状により。
			☆里(V)		~\111 <i>/</i>	11.7	/ (V)	- これには、アドル・コージーは、こうがある。くれることに対し出が地域やアルク代でより
		2		2				
自然放流方式 2段オリフィス方式 ポンプ放流方式	水深~容量関係水深~ポンプ関係	3		3				
		4		4				
		<u>(5)</u>		(5)				
		6		6				
		7		7				
41.04.44-an.ab —		(8)		8	n./rn	O CR	I cay	
放流施設諸元		. /p\	1	自然、2	笈(下段)	2段(上段)	コ (放 x) / - L lo (放 U D L)
放流孔形状	直径(高さ)	φ(D)	m					計算システムにより算出し入力
管底位置	矩形の場合→幅 池底から	$\frac{B}{h_0}$	m					計算システムにより算出し入力 計算システムにより算出し入力
■ 国 医位直 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	他広かり	Q _{max}	$\frac{\text{m}}{\text{m}^3/\text{s}}$					計算システムにより算出し入力
		H _{max}	m ⁻ /s m					計算システムにより算出し入力
池内最大ボリュー	<u>-</u> Д	V_{max}	m ³					計算システムにより算出し入力
	な調整池容量	V	m ³ /ha					$V = V_{\text{max}} / a \times 10,000$
								許容放流量 Q ≧ 最大放流量 Q _{max} +直接放流量q ₁